Determining the Convex Hull in Large Multidimensional Databases
نویسندگان
چکیده
Determining the convex hull of a point set is a basic operation for many applications of pattern recognition, image processing, statistics, and data mining. Although the corresponding point sets are often large, the convex hull operation has not been considered much in a database context, and state-of-the-art algorithms do not scale well to non main-memory resident data sets. In this paper, we propose two convex hull algorithms which are based on multidimensional index structures such as R-trees. One of them traverses the index depth-first. The other algorithm assigns a priority to each active node (nodes which are not yet accessed but known to the system), which corresponds to the maximum distance of the node region to the tentative convex hull. We show both theoretically as well as experimentally that our algorithms outperform competitive techniques that do not exploit indexes.
منابع مشابه
A Content-based Image Retrieval System Based On Convex Hull Geometry
Developments in data storage technologies and image acquisition methods have led to the assemblage of large data banks. Management of these large chunks of data in an efficient manner is a challenge. Content-based Image Retrieval (CBIR) has emerged as a solution to tackle this problem. CBIR extracts images that match the query image from large image databases, based on the content. In this pape...
متن کاملSweep Line Algorithm for Convex Hull Revisited
Convex hull of some given points is the intersection of all convex sets containing them. It is used as primary structure in many other problems in computational geometry and other areas like image processing, model identification, geographical data systems, and triangular computation of a set of points and so on. Computing the convex hull of a set of point is one of the most fundamental and imp...
متن کاملL-CONVEX SYSTEMS AND THE CATEGORICAL ISOMORPHISM TO SCOTT-HULL OPERATORS
The concepts of $L$-convex systems and Scott-hull spaces are proposed on frame-valued setting. Also, we establish the categorical isomorphism between $L$-convex systems and Scott-hull spaces. Moreover, it is proved that the category of $L$-convex structures is bireflective in the category of $L$-convex systems. Furthermore, the quotient systems of $L$-convex systems are studied.
متن کاملConvex Hull Realizations of the Multiplihedra
We present a simple algorithm for determining the extremal points in Euclidean space whose convex hull is the n polytope in the sequence known as the multiplihedra. This answers the open question of whether the multiplihedra could be realized as convex polytopes.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2001